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On the Brownian Motion of a Frequency- 
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The Langevin equations for a harmonically bound particle, where the force 
constant is a given function of time, is solved. The mean and mean-square 
properties of the solution are determined. The analysis is then specialized to the 
case of a force constant periodic in time. It is shown that the mean fluctuations 
remain bounded in time precisely when the mean motion is stable (remains 
bounded). 
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1. I N T R O D U C T I O N  

The phenomeno log ica l  theory  of the Brownian  mot ion  for l inear  systems in 
t ime- independen t  env i ronments  is quite well unders tood .  Deta i ls  can  be  
found,  for example ,  in the wel l -known review art icles of W a n g  Chang  and  
Uh lenbeck  (~l and  Chandrasekha r .  (2) The  theory  has  been ex tended  to 
cover  the cases of n o n - M a r k o v i a n  noise (31 and  f luc tuat ing  parameters ,  (4) 
e.g., the f requency  of an  oscil lator.  One case which has  not  been  t rea ted  so 
far  is the case when the pa ramete r s  of the system, while remain ing  deter-  
minist ic,  are  t ime dependent ,  due,  pe rhaps  to external  forces imposed  on 
the system. One can  think, for example ,  of an  R L C  circui t  in which the 
capac i t ance  is per iod ica l ly  varied.  The  objec t  of this pape r  is to show how 
such a system can  be  treated.  
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The reason, one might conjecture, that this problem has not been 
considered is that it does not admit of a relaxation toward equilibrium. The 
action of time-dependent external forces effectively prevents such a relax- 
ation. Nevertheless, systems with time-varying parameters are not rare, and 
it is interesting to study their fluctuations. Another 'reason for studying this 
problem is that the model we treat can also be looked on as the lineariza- 
tion of a nonlinear equation of motion about a periodic solution, with 
added noise. Such linearizations are interesting to study for the light they 
throw on the stability of the periodic solution of the original nonlinear 
equation. 

In addition to the R L C  circuit just mentioned, another physical 
realization of the problem to be studied is a pendulum with a forced motion 
of the point of support. Other electromechanical devices described, in some 
approximation, by this type of model are discussed by McLachlan. (s) 

The model which we shall treat is very similar to the models used in 
the classical case. We consider a particle in an environment with time- 
independent linear friction, and a time-dependent linear external force, 
subject to Gaussian white noise. That is, we have to study the Langevin 
equation 

5~ + fi~c + f ( t ) x  = r ( t )  (1) 

where fl is the friction, f ( t )  the external force, and F( t )  the random force. 
F(t)  is characterized by its statistical properties. It is a Gaussian random 
variable with 

( r ( t ) )  = 0 (2a) 

( r ( t ) r ( s ) )  = m k T ~  6( t  - s) (2b) 

For the sake of definiteness, we have assumed that the random force is 
independent of the time-dependent external forces. Therefore the coeffi- 
cient of the delta function in (2b) is the same as that appropriate to a 
time-independent environment. In the present case, one does not have the 
fluctuation-dissipation theorem at one's disposal to determine this coeffi- 
cient, as one does in the case of the time-independent environment. 

We shall produce a formal solution to Eq. (1) and deduce its statistical 
properties with the help of Eqs. (2a) and (2b). 

. SOLUTION OF THE EQUATIONS 

To solve Eq. (1), we first eliminate the first derivative term. Setting 

x ( t )  = y ( t ) e  -B'/2 (3) 
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one finds that y satisfies 

f + [ f ( t )  - f12/n]y = A(t), A(t) = F(t)exp(flt/2) (4) 

Now let ~l(t) and ff2(t) be special solutions to the homogeneous form of 
Eq. (4), i.e., Eq. (4) with A (t) set equal to zero. Specifically, 

d~l(O ) = O; ~1(0) = 1 (5) 

gb2(0 ) = l; ~2(0)  = 0 

Then the general solution to Eq. (4) is 

s y(t) = G(t,s)A(s)ds+ Aq~,(t) + Bq~2(t ) (6) 

where 

G(t, s) = qh(t)O2(s) - ~2(t)e&(s) (7) 

One can identify the constants A and B with f (0 )  and y(0), respectively. 
Making use of Eq. (2a), one sees immediately that (y(t)> is a solution 

of the homogeneous equation, i.e., 

(y(t)> = y(0)q,2(t ) + )) (0)qh(t) (8) 

and (y(t)> is obtained immediately by differentiating (8). This is only to be 
expected, by the linearity of the equations. To get (x(t)> one merely 
multiplies by e x p ( -  fit~2). 

The mean square fluctuation iny( t )  may be computed, through (6), by 

((By) 2> = ( Iy( t )  - (y(t)>]2> 

=s163 G(t,s)G(t,s')(A(s)A(s')> (9) 

By virtue of Eq. (2b), this can be written as 

<(a.V)2> = mkTfls 2(t, s)e lr ds (10) 

In terms of the original variable x, one has 

((8x)2> = mkTfls 2( t,s)e-l~(t-s) as (11) 

One can also write down similar expressions for correlation functions 
(x(t)x(s)>, (x(t)Yc(s)>, etc. The method should be obvious from the 
foregoing, and we omit further details. 

If one sets f ( t )= const, one is back to the classical problem of the 
Brownian motion of a harmonically bound particle, and the well-known 
results are recovered in that limit. 
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The function G(t,s) defined by Eq. (7) is the fundamental building 
block of our solutions. The solutions (5) from which G is constructed may 
not, on the other hand, be the most convenient set of solutions, e.g., they 
may not be the "standard," tabulated, linearly independent solutions of the 
homogeneous equation. However if we take any other linearly independent 
set ~1 and ~2 related to qh and q~2 by 

(~,, ~2) = A(~bl, d?2) (12) 

where A is a nonsingular constant matrix, then 

+l(t)q~2(s) - +2(t)~,(s) = A(A)[qh(t)q,z(S ) - 02(t)0l(S)] (13) 

where A(A) is the determinant of A. Hence, one is free to use any pair of 
linearly independent solutions to construct the kernel G, provided one 
normalizes by the proper determinant. 

Since F(t) has been assumed to be Gaussian and, by (6), y(t) is a 
linear function of F, one sees immediately that y(t) is a Gaussian random 
variable with mean and variance given by Eqs. (8) and (10), respectively. 
Hence x(t) is also a Gaussian random variable, with mean (y(t))e -&/2 
and variance given by Eq. (11). 

The stochastic process x(t) is, however, no longer a stationary, or even 
wide-sense stationary, process. The correlation function (x(t)x(s)) is not a 
function of t - s alone. In view of the externally imposed time dependence, 
this result is not surprising; the physical situation is not temporally homoge- 
neous. 

Without further specification of the forcing term f(t), the problem is 
too generally defined for further progress to be possible. We therefore pass 
on to discuss a specific example. 

3. AN EXAMPLE 

A case of some interest is that in which the forcing term has a 
persistant nature. The simplest example of persistence is periodicity (con- 
stancy being a trivial kind of periodicity). The differential equation with 
periodic coefficients which has been most thoroughly studied is Mathieu's 
equation, but we shall choose a slightly more general example. 

We shall consider Hill's equation, which means taking f( t )  in Eq. (1) to 
be a periodic function of t, with period 7r, which is even in t. The fixing of 
the period as ~r merely means choosing an appropriate unit of time. 
Mathieu's equation is a special case when f(t)  is taken as f =  a + 16q cos2t 
(using the notation of Whittaker and Watson(6)). In neither case can 
solutions be written down in closed form. The Mathieu functions, about 
which a great deal is known, are periodic solutions with period 2~r, but only 
exist for special values of a; and they are of little interest here. Therefore, 
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we shall not present detailed analytical formulas, but only present results 
on the general nature of the fluctuations. 

The result which enables us to make some progress is Floquet's 
theorem, which states that, if one has a differential equation with periodic 
coefficients, of period ~r, say, it admits a solution of the form 

x~(t) = e~tz(t) (14) 

where z(t) is periodic, with period ~r. In the case of Hill's equation, since 
f ( t)  is taken to be even, x2(t ) = x l ( - t )  is also a solution, which is linearly 
independent of x](t ) (since the ratio changes by e 2~ when t changes by ~r). 

The x 1 and x 2 are not necessarily the solutions ~1 and q~2 defined by 
Eq. (5), but are linear combinations of them. We can always choose/~ so 
that Re ~/> 0, since + # occurs in one solution, - /~ in the other, so that we 
will always call x 1 the Floquet solution for which Re/~ >/0. 

By Eq. (8), (y ( t ) )  increases in time without bound unless Re/~ = 0. 
Hence (x ( t ) )  increases without bound unless Re ~ < fl/2. When the 
solution increases without bound, one says that the motion is unstable. 
Physically, something always happens to cut off this unbounded motion. 
Nonlinear terms, neglected in the formulation, become important, or there 
may be a back-reaction changing the external forces. In any event, the 
character of the problem is changed beyond the scope of the present 
analysis. Therefore, we confine ourselves to the so-called stable case where 
(x ( t ) )  remains bounded. The question to be answered, then, is how do the 
fluctuations behave? Do they also remain bounded? 

By virtue of Eq. (13), we may use x I and x 2 to construct G(t,s). The 
value of A(A) is of no interest for the present question, since it is a constant. 
Then G(t,s) has a growing term of the form exp[ /~ ( t -  s)] • a periodic 
function, and a decaying term of the form e x p [ - # ( t -  s)] • a periodic 
function, if Re/~ > 0. If Re/~ = 0, then both terms are bounded. In this 
latter case, Eq. (11) shows immediately that ((Sx) 2) is bounded. 

In the former case, when Re/~ > 0, the only part of G2(t,s) that is 
growing behaves like exp[2/~(t - s)] • a periodic function. Thus, the grow- 
ing part of the integrand in (11) contains the factor exp[(2/~ - fl)(t - s)]. 
But, since Re/~ < fl/2, the exponent is negative, and the integral is 
bounded for all t. In the limiting case when/~ is real and equal to ill2, the 
fluctuations diverge linearly in t, modulated by a periodic function. The 
case of the free particle is an example of this. The case of the harmonically 
bound particle is also a special case of the foregoing development. 

Specializing to Mathieu's equation, it is possible to get more specific 
results by expanding in powers of q for small q. In the small-q limit, the 
primary effect is to renormalize the oscillator frequency. The results are 
little different from the case of the harmonically bound particle. Conse- 
quently we do not reproduce them here. In our opinion, the qualitative 
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results depending only on the periodicity of f(t) are much more interesting 
than these approximations. 

4. DISCUSSION 

We have determined the Brownian motion of an oscillator with a 
time-dependent frequency. The frequency is externally determined, but is 
not a random variable. The random force was assumed to be delta- 
correlated Gaussian, and the friction assumed to be constant, linear, and 
related to the random force through the fluctuation-dissipation theorem. 
That is, the fact that the system parameters are being modulated is assumed 
not to affect the systematic friction characteristic of the interaction of the 
system with its environment. If one thinks in electrical circuit terms, the 
capacitance is being modulated, while the noise source and dissipation take 
place in the resistance, so that the assumptions are not unreasonable 
physically. 

The main results of this investigation are (i) Eqs. (6) and (11), which 
give the displacement and mean square fluctuation in terms of solutions to 
the deterministic equations, and (ii) the determination of the qualitative 
nature of the growth of the mean square fluctuation when the modulation 
is periodic. 
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